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This paper is concerned with the prediction of the tensile strengths of fibre composites 
where the fibres are aligned in the direction of tensile loads, and are flawed to some 
extent. A theory is derived for predicting the strengths and failure mechanisms of such 
composites. The theory agrees reasonably well with experiments, and may be qualitatively 
applicable to composites containing randomly aligned fibres. 

1. Introduction 
The advantages of fibre reinforced materials are 
well known, and have been described extensively 
in the literature [1, 2]. In the present article, a 
theory is derived for predicting the tensile 
strengths of  flawed fibre composites by combin- 
ing an analysis due to Kelly [3 ] with a qualitative 
approach suggested by Parratt [41. 

The following general assumptions are made: 
firstly, it is assumed that the fibres and matrix 
do not react chemically, and that good bonding 
occurs at their interfaces. Secondly, all the 
fibres are assumed to have more or less the same 
diameter and length. Lastly, the matrix is 
assumed to carry only a small amount of the 
direct load; it acts primarily to transfer the 
stress from fibre to fibre in shear. These assump- 
tions are the usual ones made for fibre com- 
posites. They are valid for most existing com- 
posites. 

2, Previous Investigations 
Extensive reviews of previous investigations on 
the mechanics of  fibre reinforcement are readily 
available [2, 5, 6]; therefore, only the theory 
relevant to the present work will be discussed. 

2.1. Effect of Flaws on the Strength of 
Fibres 

Any defects, either in the fibres or on the sur- 
face, affect the strength properties. The effects 

vary with the length and diameter of  the fibres. 
The mean strength of  a number of fibres in a 
bundle decreases with increasing length of  the 
fibres. This is illustrated in fig. 1, [4] which 
shows the drop of average strength with length 
of the fibres. 
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Figure I Effect of defects on the strengths of fibres [4]. 

Defects also result in a variation in strength 
between individual fibres, so that when a bundle 
of  fibres is tested, some fibres will break before 
others. This increases the load on the remaining 
fibres, and the strength of the bundle is less than 
the mean strength of the fibres in the bundle. 
The dashed line in fig. 1 shows how bundle 
strength is related to fibre length. The bundle 
strength has been related to the mean strength, 
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and to the coefficient of variation of the in- 
dividual fibre strengths about the mean, by 
Coleman [8]. 

Finally, it is known that fibres become 
stronger with decreasing diameter. This effect 
has generally been attributed to the fact that, as 
fibres become smaller in diameter, there are 
fewer surface flaws on brittle fibres, and fewer 
dislocations in ductile fibres [7]. 

Many fibres in common use, such as large 
diameter fibres of tungsten or steel, have very 
few flaws. These exhibit negligible strength 
variation with length, or between fibre strength 
and bundle strength, for fibres of a given dia- 
meter. Within the present context, such fibres 
will be termed "flawless" and all others "flawed". 

2.2. Tensile Strength of Aligned, Dis- 
continuous Fibre Composites 

A schematic representation of an aligned, 
discontinuous fibre composite subjected to 
tension is shown in fig. 2. Kelly [3] (see also [2] 
and [9]) has developed a theory to predict the 
tensile strength of such a composite where the 
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F igure  2 Schematic representation of an aligned, discon- 
tinuous fibre composite subjected to tension; (a) shows 
stress distribution at failure. 

fibres are flawless (as defined above), and the 
matrix is ductile. The theory assumes that the 
stress distribution in the composite at .failure 
has the form shown in fig. 2a. Kelly argues that 
high shearing stresses in the matrix near the 
fibre ends cause yielding of the matrix. This 
results in a constant shear stress re in the matrix 
along the fibre ends, which is equal to the yield 
shear stress of the matrix -ry. This constant shear 
stress is accompanied by a growth of tensile 
stress from the ends of the fibre, with a constant 
maximum value along the central length. 
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For a brittle matrix, Outwater [10] has 
argued that high shearing stresses in the matrix 
near the fibre ends cause cracking at the fibre/ 
matrix interface. However, provided that the 
coefficient of shrinkage of the matrix is greater 
than that of the fibres, then during curing the 
matrix will exert a permanent compressive 
(shrinkage) stress on the fibres. Stress is there- 
fore transferred over the cracked or "un- 
bonded" areas by a constant stress, re equal to a 
frictional stress, %. Thus, an identical build-up 
of stress occurs for a brittle matrix as for the 
ductile case (fig. 2a). The implication of Out- 
water's argument is that Kelly's strength theory 
should also be applicable to fibre composites 
containing brittle matrices, such as fibre-glass. 

Kelly, in developing his strength theory, shows 
that two modes of failure can occur for the 
composite (fig. 2a). If  the length of the fibres 
(l) is greater than a certain critical length (le) 
then, on increasing the tensile load (ae), the 
ultimate strength of the fibres is reached, and 
they fracture simultaneously. The load thrown 
on the matrix then exceeds its ultimate strength 
(ainu), and results in complete failure of the 
composite. The breaking strength of the compo- 
site (Geu) is given by the equation 

~eu=  1 - - 2 l  CrruVf+~vf (1) 

for l >/ le, and where ~Tn is the stress borne by 
the matrix just before the fibres fracture. The 
critical length (le) is given by 

told = ~fu/Z~e (2)  

for d is the fibre diameter, and, as described 
earlier, re equals the yield shear stress (ry) for a 
ductile matrix, and a frictional stress (rb) for a 
brittle matrix, 

If  the fibres are shorter than the critical 
length, the composite will fail because the fibres 
pull out of the matrix at a breaking stress 
(~eu) given by 

~eu = vfrel/d + O'muVm (3) 
where C~mu is the ultimate strength of the matrix. 
Equation 3 also provides a method of deter- 
mining the value of the constant shear stress 
(re) for a given brittle or ductile matrix. Thus, 
consider a composite in which failure occurs by 
pull out of the fibres (l < le). Then, knowing 
the failure strength (~eu), the fibre aspect ratio 
(l/d) and the ultimate strength of the matrix 
(~mu), the value of r e (=ry  or rb) is given by 
equation 3. 
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The above equations are only applicable 
provided that the volume fractions of fibres are 
greater than certain critical volume fractions 
[2]. For practical composites, these critical 
volume fractions are less than 10 ~ and therefore 
rarely occur in practice. It is also apparent that 
the above equations would not be applicable for 
composites containing flawed fibres since, as 
described earlier, some fibres will break before 
others, due to the strength variation effect. 
These shorter lengths will then be stronger due 
to the length/strength effect, and may sustain 
greater loads before fracturing again. This is 
essentially the argument of Parratt [4], who 
has proposed a theory to account for the strength 
of  flawed fibre composites; in particular, for 
fibre-glass. Parratt suggests that continuous 
fracturing of the fibres occurs until the fibres 
are not long enough to sustain transfer of their 
breaking strength, and final failure occurs by 
fibres pulling o u t  of the matrix. However, 
Parratt does not provide more than rough 
quantitative expressions for his theory. 

Rosen [5] has also evaluated the strength of 
such composites as a function of the fibre 
population, taking into account that near a 
discontinuity (fibre-end), a part of the fibre is 
not fully loaded. The fibres are assumed to 
fracture at random positions and, when enough 
fractures have accumulated over a given cross- 
section, this is a sufficient weakness for total 
fracture to occur. Rosen carried out an experi- 
mental study using a glass reinforced resin, but 
the strengths obtained were considerably less 
than he had predicted. This perhaps indicates 
that Parratt's proposal for the mode of failure is 
the more accurate one, at least for glass re- 
inforced resin (fibre-glass) composites. 

3. Derivation of Strength Theory 
In this section, it will be shown that the analysis 
of Kelly [3 ] can be combined with the qualitative 
approach of Parratt [4] (see section 2.2) to 
provide a theory for predicting the tensile 
strength and failure mechanism of a fibre 
composite where the fibres are aligned in the 
direction of tensile loads, and are flawed to some 
extent. As noted in section 2.1, the strength of a 
bundle of flawed fibres decreases with increasing 
length of  the fibres as shown by the dashed line 
in fig. 1. This curve can be expressed as 

afu = f(/) (4) 

where ~fu is the breaking strength of a bundle of 

fibres of a given diameter, and having a current 
average length I. This relation can be determined 
for a given fibre composite by obtaining experi- 
mental length/strength data for the single 
fibres and relating the results to bundle strength, 
using the theoretical results of Coleman [8]. 
Given equation 4, equations 5, 6, and 7 follow 
directly from equations 1, 2, and 3 respectively. 

Ida = f(/)/2rc (5) 

( / e )  f(/)v,-t-aff, vm (6) creu = 1 -- 2l 

forl~> le. 

aeu = vrrcl/d + O'mu Vm (7) 

for l ~ le, and where aeu is the strength of the 
composite, d is the fibre diameter, le is the 
critical length of the fibres. Equation 6 will 
generally define one of the three types of 
curves (a-b) shown in fig. 3 depending on the 
nature of equation 4. Equation 7 will define 
the linear pull-out curve (c-d) also shown in fig. 
3. Assuming that the fibres have the same 
initial length, l i ,  where li >~ le, the curves (a-b) 
can be used to predict the failure mechanism 
and strength of a given fibre composite as 
follows. Note that the numerical values shown in 
fig. 3 have no significance at present, and are 
used later when the theory is compared with 
experiment. 
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Figure 3 Modes  o f  fa i l u re  f o r  f l awed  f ib re  composites. 
Note 1 in. = 2.5 cm;  1 ksi = lO001b/in. 2 = 70.3 kg /cm 2. 

Case 1 (al-ba) This shape of curve occurs for 
badly flawed fibres; that is, where there is a 
severe length/strength effect. When the compo- 
site reaches the stress ere1 (fig. 3) the fibres will 
fracture. However, since the curve slopes 
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upwards for shorter lengths of  the fibres the 
ultimate load of the composite is far from 
reached. The broken fibres, which are shorter 
and therefore "stronger", will not fracture 
again until the load is increased. Increasing the 
load is equivalent to moving up the curve until 
the point p is reached, where the average length 
of  the fibres equals the critical length (le) given 
by equation 5; and at this point the composite 
fails because the fibres pull out of the matrix. 
The strength of the composite (~eu) is therefore 
given from equation 7 as 

~eu = vrTele/d + emu Vm (8) 

for li /> le, case 1, and the critical or failing 
length (le) is given by equation 5. Equation 8 can 
be expressed more conveniently using equations 
4 and 5 as follows 

eeu = ~u  vr/2 + emu Vm (9) 

for li >/ le, case 1. 
Case 2 (a~-b2) 1his shape of curve could arise for 
lightly flawed fibres, and is characterised by the 
maximum point m before the curve intersects 
the linear pull-out curve (c-d). As for case 1, 
fracturing of  the fibres will begin when the 
composite reaches the stress ee2, and will con- 
tinue until complete failure occurs at the maxi- 
mum point (m). The strength of this type of 
composite is given by equation 6 where the 
average length of the fibres at final failure is 
given by &reu/dl = 0, for li >> le, case 2. 
Case 3 (aa-b3) This shape of curve would arise for 
flawless or lightly flawed fibres. When the 
composite reaches the stress ~re3, the fibres will 
fracture, and failure will be final at this point 
(f), since the curve slopes downwards for 
shorter lengths of the fibres. The strength of this 
type of composite is given by equation 6 where 
the length of  fibres at final failure is simply their 
initial length (h). 

When l~ ~</e, failure will be by immediate 
pull-out of the fibres, and the strength of  the 
composite is given by equation 7 where l = li. 

The continuous fracturing of the fibres which 
occurs with increasing load for cases 1 and 2 
when l~ >> le explains why snapping noises are 
heard in flawed fibre composites such as fibre- 
glass during the first loading cycle. An important 
conclusion is that if a composite is character- 
istically case 1 (badly flawed fibres), then the 
fibres can never contribute more than 50 ~ of 
their maximum inherent strength to the strength 
of  the composite. That is, since final failure is by 
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pulling out of the fibres at the critical length/e, 
then from equation 7, the contribution of  the 
fibres to the strength of  the composite is the 
quantity Vvrele/d, and from equations 4 and 5, 

vr'rmele/d = f(le)vt/2 = ~fuVf/2 

4. Comparison with Experiment 
A search of  the literature by the authors re- 
vealed that realistic comparisons with the theory 
could only be made with the results of Parratt (4) 
on resins reinforced with aligned glass rovings. 
Other experimental data is characterised by 
either excessive scatter, or insufficient data. 
Parratt's specimens were tested in simple tension 
in the direction of alignment of the fibres. The 
specimens were fabricated using different dia- 
meters of fibres. Tensile strengths on the 
individual glass fibres showed that the strengths 
of the fibres rose from 80 ksi (1 ksi = 1000 lb/in. 2= 
70.3 kg/cm 2) for 2 in. (1 in. = 2.5 cm) lengths 
up to 300 ksi for lengths below 0.25 in. and did 
not vary appreciably with the diameter of the 
fibres. Since this is a severe length/strength 
effect, the fibres are flawed (as defined in section 
2.1). Parratt did not provide data for the scatter 
of strengths of the fibres of a given diameter, 
so we assumed that a bundle of these fibres 
behaves approximately the same as the single 
fibres. If it is further assumed that the length/ 
strength effect is linear, the relation expressed by 
equation 4 is given as 

efu - -  f(/) = 300 -- 110/ (10) 

When equation 10 is substituted in equations 6 
and 7, and plotted for the various diameters of 
fibres used in the specimens, it is found that all 
of  the specimens are characteristically case 1 
(badly flawed fibres, section 3). In fact, the 
curves (al-bl) and (c-d) in fig. 3 are really plots of  
equations 6 and 7 respectively where ~rfu is given 
by equation 10, ahd where the diameter of the 
fibres (d) equals 0.01 in. 

Having established that the mode of failure of  
the composites is case 1, it is now possible to 
predict the strength of a given composite 
directly from equation 9 as follows. Note that 
the contribution of the matrix to the strengths of  
the composites (~mu Vm) is small, and will there- 
fore be neglected. The value of the constant 
frictional stress (~'b) (resins are brittle, and there- 
fore re = ~'b, section 2.2) can be found from 
fig. 4 which is a reproduction of Parratt's fig. 5. 
From section 3, the curve of fig. 4 should be a 
linear pull-out curve defined by equation 7 where 
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[ igure 4 Derivat ion of  the f r ic t ional  s t ress (rb) f rom the 
exper imenta l  results of  Parratt  [4]. Note 1 ks = 1000 Ib/ inf l  
=70 ,3  kg/cm 2. 

vf = 1 (Parratt has corrected to 100 K volume 
fraction of fibres for his curves). Therefore, a 
straight line (dashed) has been drawn through 
the mean of  the experimental points, and has a 
measured slope of 0.44 ksi. From equation 7, 
this slope equals 7b; that is 

-r~ = 0.44 = Cre~ d/le (11) 

for vf = 1. Then, from equations 5 and 10 

300 - -  110le 
le /d-  2 • 0.44 (12) 

and from equation 9 the strength of a given 
composite containing fibres of  diameter d is 
given by 

-~u = ~ u / 2  (13) 

for ve - -  I, and efu is evaluated from equation 
10 with l = le. Equations 10, 12, and 13 then 
completely define the strength of the compo- 
sites. For example, for the specimen containing 
fibres of  diameter d = 0.01 in., the final pull-out 
length is given by equation 11 as 

300 - -  110/e 
le/0.01 --  2 • 0.44 

i.e. le = 1.52 in. and the composite will fail 
by pull-out of  the fibres, when the fibres have 
fractured to the average length of 1.52 in. The 
strength of  the composite is given from equations 
10 and 12 as 

creu = crfu/2 = (300 - -  110/e)/2 = 
(300 - -  110 • 1.52)/2 = 66.5. 

Similarly, the theoretical values of  ae~ can be 
found for the whole range of  diameters of  fibres, 
and provide the theoretical curve (dashed) 
shown in fig. 5 which is a reproduction o f  
Parratt 's  fig. 4. Note that good agreement is 
obtained with Parratt 's  results for the complete 
range of diameters; and as predicted by the 
theory of  section 3, the maximum strength of the 
composites (150 ksi) is 5 0 ~  of the maximum 
inherent strength of the fibres (300 ksi) (a 
direct comparison can be made since Parrat t  
has corrected to 100 ~ volume fraction of  fibres 
as mentioned above). 
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Figure 5 Compar ison of  theory (dashed line) with the 
exper imenta l  resul ts of  Parratt  [4]. Note 1 in. = 2.5 cm; 
1 ksi = 1000 Ib/ inf l  = 70.3 kg/cm 2. 

5. Conclus ions 
I t  appears that the theory derived in section 3 
provides good approximations for the tensile 
strengths of  aligned, flawed fibre composites. I t  
was seen that several modes of failure can occur 
for such composites depending on the initial 
length of  the fibres, and on the degree to which 
the fibres are flawed. Most fibres are handled 
during manufacture and fabrication and become 
badly flawed; therefore, this case is of  special 
interest. For this case, the composite fails by a 
successive fracturing of the fibres until final 
failure by pulling out of  the fibres. Furthermore, 
badly flawed fibres can never contribute more 
than 50 ~ of their maximum inherent strength to 
the strength of the composite. 

The composite strength was shown to be 
primarily dependent on three factors: these are 
the degree to which the fibres are flawed, the 
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aspect ratio of  the fibres, and the transfer stress 
developed by the matrix. From this point of  
view, ductile or semi-ductile metals are probably 
more suitable for use as matrices for the newer 
whiskers which have comparatively low aspect 
ratios. That  is, f rom equations 6, 7, and 8, the 
high strengths of  the whiskers can be developed 
by a matrix with a high transfer stress (re) since 
this compensates for a low aspect ratio (l/d). 
Ductile materials develop a high transfer stress 
equal to their yield shear stress whereas brittle 
materials such as resins can develop only 
comparatively low frictional stresses. 

I t  may be that the theory developed can also 
be applied to predict the tensile strengths of  
flawed fibre composites, where the fibres are 
orientated in random directions by using the 
equations developed by Cox [11 ]. However, this 
requires further investigation. Certainly, the 
theory should be applicable for providing 
qualitative trends for the tensile strengths of  such 
composites. 
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